- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
32
- Author / Contributor
- Filter by Author / Creator
-
-
Kantarcioglu, Murat (5)
-
Akcora, Cuneyt G. (3)
-
Gel, Yulia R. (3)
-
Akcora, Cuneyt G (2)
-
Coskunuzer, Baris (2)
-
Alom, Zulfikar (1)
-
Azad, Poupak (1)
-
Bakdash, Jonathan Z. (1)
-
Li, Yitao (1)
-
Marusich, Laura R. (1)
-
Ngo, Tran (1)
-
Thuraisingham, Bhavani (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 20, 2026
-
Alom, Zulfikar; Ngo, Tran; Kantarcioglu, Murat; Akcora, Cuneyt G (, ICLR 2025)Free, publicly-accessible full text available April 25, 2026
-
Akcora, Cuneyt G.; Gel, Yulia R.; Kantarcioglu, Murat; Coskunuzer, Baris (, Thirty-sixth Conference on Neural Information Processing Systems)
-
Akcora, Cuneyt G.; Li, Yitao; Gel, Yulia R.; Kantarcioglu, Murat (, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence)Recent proliferation of cryptocurrencies that allow for pseudo-anonymous transactions has resulted in a spike of various e-crime activities and, particularly, cryptocurrency payments in hacking attacks demanding ransom by encrypting sensitive user data. Currently, most hackers use Bitcoin for payments, and existing ransomware detection tools depend only on a couple of heuristics and/or tedious data gathering steps. By capitalizing on the recent advances in Topological Data Analysis, we propose a novel efficient and tractable framework to automatically predict new ransomware transactions in a ransomware family, given only limited records of past transactions. Moreover, our new methodology exhibits high utility to detect emergence of new ransomware families, that is, detecting ransomware with no past records of transactions.more » « less
-
Akcora, Cuneyt G.; Bakdash, Jonathan Z.; Gel, Yulia R.; Kantarcioglu, Murat; Marusich, Laura R.; Thuraisingham, Bhavani (, Proceedings of the 2018 IEEE International Conference on Intelligence and Security Informatics (ISI))
An official website of the United States government
